Optimized neural coding? Control mechanisms in large cortical networks implemented by connectivity changes.
نویسندگان
چکیده
Using functional magnetic resonance imaging, we show that a distributed fronto-parietal visuomotor integration network is recruited to overcome automatic responses to both biological and nonbiological cues. Activity levels in these areas are similar for both cue types. The functional connectivity of this network, however, reveals differential coupling with thalamus and precuneus (biological cues) and extrastriate cortex (nonbiological cues). This suggests that a set of cortical areas equally activated in two tasks may accomplish task goals differently depending on their network interactions. This supports models of brain organization that emphasize efficient coding through changing patterns of integration between regions of specialized function.
منابع مشابه
Changes in Effective Connectivity Network Patterns in Drug Abusers, Treated With Different Methods
Introduction: Various treatment methods for drug abusers will result in different success rates. This is partly due to different neural assumptions and partly due to various rate of relapse in abusers because of different circumstances. Investigating the brain activation networks of treated subjects can reveal the hidden mechanisms of the therapeutic methods. Methods: We studied three groups o...
متن کاملPrediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models
In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...
متن کاملPrediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models
In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...
متن کاملAnisotropic connectivity implements motion-based prediction in a spiking neural network
Predictive coding hypothesizes that the brain explicitly infers upcoming sensory input to establish a coherent representation of the world. Although it is becoming generally accepted, it is not clear on which level spiking neural networks may implement predictive coding and what function their connectivity may have. We present a network model of conductance-based integrate-and-fire neurons insp...
متن کاملDynamical Neural Networks: modeling low-level vision at short latencies
Our goal is to understand the dynamics of neural computations in low-level vision. We study how the substrate of this system, that is local biochemical neural processes, could combine to give rise to an efficient and global perception. We will study these neural computations at different scales from the single-cell to the whole visual system to infer generic aspects of the underlying neural cod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human brain mapping
دوره 34 1 شماره
صفحات -
تاریخ انتشار 2013